3.2031 \(\int \frac{\sqrt{a d e+(c d^2+a e^2) x+c d e x^2}}{\sqrt{d+e x}} \, dx\)

Optimal. Leaf size=48 \[ \frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d (d+e x)^{3/2}} \]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*c*d*(d + e*x)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0214836, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.026, Rules used = {648} \[ \frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/Sqrt[d + e*x],x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*c*d*(d + e*x)^(3/2))

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}} \, dx &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 c d (d+e x)^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.024581, size = 37, normalized size = 0.77 \[ \frac{2 ((d+e x) (a e+c d x))^{3/2}}{3 c d (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/Sqrt[d + e*x],x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(3/2))/(3*c*d*(d + e*x)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 50, normalized size = 1. \begin{align*}{\frac{2\,cdx+2\,ae}{3\,cd}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}{\frac{1}{\sqrt{ex+d}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x)

[Out]

2/3*(c*d*x+a*e)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)/d/c/(e*x+d)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.02892, size = 24, normalized size = 0.5 \begin{align*} \frac{2 \,{\left (c d x + a e\right )}^{\frac{3}{2}}}{3 \, c d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

2/3*(c*d*x + a*e)^(3/2)/(c*d)

________________________________________________________________________________________

Fricas [A]  time = 1.76137, size = 128, normalized size = 2.67 \begin{align*} \frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (c d x + a e\right )} \sqrt{e x + d}}{3 \,{\left (c d e x + c d^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*x + a*e)*sqrt(e*x + d)/(c*d*e*x + c*d^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )}}{\sqrt{d + e x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(1/2),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/sqrt(d + e*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{\sqrt{e x + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/sqrt(e*x + d), x)